In number theory, a super-Poulet number is a Poulet number, or pseudoprime to base 2, whose every divisor d {\displaystyle d} divides 2 d 2 {\displaystyle 2^{d}-2} .

For example, 341 is a super-Poulet number: it has positive divisors (1, 11, 31, 341), and we have:

(211 - 2) / 11 = 2046 / 11 = 186
(231 - 2) / 31 = 2147483646 / 31 = 69273666
(2341 - 2) / 341 = 13136332798696798888899954724741608669335164206654835981818117894215788100763407304286671514789484550

When Φ n ( 2 ) g c d ( n , Φ n ( 2 ) ) {\displaystyle {\frac {\Phi _{n}(2)}{gcd(n,\Phi _{n}(2))}}} is not prime, then it and every divisor of it are a pseudoprime to base 2, and a super-Poulet number.

The super-Poulet numbers below 10,000 are (sequence A050217 in the OEIS):

Super-Poulet numbers with 3 or more distinct prime divisors

It is relatively easy to get super-Poulet numbers with 3 distinct prime divisors. If you find three Poulet numbers with three common prime factors, you get a super-Poulet number, as you built the product of the three prime factors.

Example: 2701 = 37 * 73 is a Poulet number, 4033 = 37 * 109 is a Poulet number, 7957 = 73 * 109 is a Poulet number;

so 294409 = 37 * 73 * 109 is a Poulet number too.

Super-Poulet numbers with up to 7 distinct prime factors you can get with the following numbers:

  • { 103, 307, 2143, 2857, 6529, 11119, 131071 }
  • { 709, 2833, 3541, 12037, 31153, 174877, 184081 }
  • { 1861, 5581, 11161, 26041, 37201, 87421, 102301 }
  • { 6421, 12841, 51361, 57781, 115561, 192601, 205441 }

For example, 1118863200025063181061994266818401 = 6421 * 12841 * 51361 * 57781 * 115561 * 192601 * 205441 is a super-Poulet number with 7 distinct prime factors and 120 Poulet numbers.

External links

  • Weisstein, Eric W. "Super-Poulet number". MathWorld.
  • Numericana

Super chicken Stock vector Colourbox

(PDF) Primes obtained concatenating four consecutive numbers, the

Opération Super Poulet InternationalImpact ONG support depuis 2001

SGP Schweizer Geflügelproduzenten Poulet

SuperzahlLotto Mit der Extrazahl zum MegaJackpot